The Interaction of Cationic Metal π -Enyl Complexes with Aryltrimethyl -silanes and -stannanes. Novel Electrophilic Aromatic Substitutions

By GLYN R. JOHN and LEON A. P. KANE-MAGUIRE (Department of Chemistry, University College Cardiff, Cardiff CF1 1XL, Wales)

and COLIN EABORN

(School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ, Sussex)

Summary The electrophile $[(C_6H_7)Fe(CO)_3]^+$ has been shown to react readily with a range of ArMMe₃ compounds (M = Si or Sn, Ar = XC₆H₄, X = H, p-MeO, or p-Me₂N, 2-furyl, or 2-thienyl) to give the corresponding diene-substituted aromatic compounds $[(ArC_6H_7)-Fe(CO)_3]$.

THE use of cationic π -enyl complexes such as $[(C_6H_7)Fe-(CO)_3]^+$ (I) as electrophilic reagents towards aromatic substrates has recently been demonstrated.¹ A variety of diene-substituted heterocycles (e.g. II; Ar = indolyl, pyrrolyl, furyl, thienyl) and benzenoid derivatives (e.g. II; Ar = 1,3,5-trimethoxybenzyl, or 1,3-dimethoxybenzyl) were obtained. However, cation (I) was apparently not sufficiently electrophilic to attack anisole, alkylbenzenes or benzene.

It occurred to us that diene-substituted derivatives of the less activated arenes might by synthesised by using the reaction between (I) and $aryl-SiMe_3$ and $aryl-SnMe_3$ compounds, since these are known to be much more reactive towards electrophiles than the corresponding aryl-H compounds.^{2,3} This has now been confirmed, and reaction (1) (M = Si,Sn) proceeds readily in acetonitrile or acetone using a wide variety of aryl groups (e.g. Ar = Ph, p-Me-OC₆H₄, p-Me₂NC₆H₄). In most cases the reactions proceed to completion, shown by the disappearance of the original dienyl carbonyl bands at 2110 and 2065 cm⁻¹, and the growth of product peaks at 2050 and 1970 cm⁻¹ characteristic of neutral tricarbonyl iron (diene) compounds.

$$[[C_6H_{j}]Fe(CO)_3]BF_{4} + ArMMe_3 \longrightarrow Fe(CO)_3 + Me_3MBF_{4}$$
(1)
(1) (11)

The compound (II; $Ar = p - Me_2NC_6H_4$) was isolated in ca. 50% yield as fine cream crystals (m.p. 116—117 °C) by evaporation of the acetone solvent, extraction with pentane, and cooling at -78 °C. Satisfactory elemental analyses were obtained. Its electron-impact mass spectrum revealed the expected parent peak at m/e 339, together with the step-wise loss of three carbonyl groups. Strong peaks were also observed at m/e 197 and 121, which can be assigned to Me₂NC₆H₄-Ph and Me₂NC₆H₅, respectively. The compound (II; Ar = p-MeOC₆H₄) has been similarly characterised.

 TABLE, Reaction of $[(C_4H_7)Fe(CO)_3]BF_4$ (0.0065M) with trimethyl Si and Sn derivatives in MeCN at 45 °C.

Substrate			k_{2}^{a} (M ⁻¹ S ⁻¹)	Relative rates
PhSiMe ₈	••		<10 ⁻⁷ b	<0.1
$(p-MeO.C_{e}H_{4})SiMe_{3}$	• •	••	$1.1 imes10^{-6}$	1
(p-MesN.C,H)SiMes		• •	$5.8 imes10^{-3}$	5,300
2-furyl SiMes	• •		1.4×10^{-4}	127
2-thienyl SiMe ₈			$1.9 imes10^{-6}$	1.7
PhSnMe ₈			$3.9 imes10^{-6}$	3.5
$(p-MeO.C_{a}H_{4})SnMe_{3}$			$6.5 imes10^{-5}$	60
(p-Me2N.C.H4)SnMe3		••	$3\cdot4 \times 10^{-2}$	30,000

^aObtained by following the disappearance of the dienyl carbonyl band at 2110 cm⁻¹. ^b No apparent reaction after 8 davs.

We have shown reaction (1) as giving the Me₃MBF₄ species, but have not in fact identified the tin and silicon containing products. It is well known that for M = Si, the fluoroborate, if ever formed, rapidly breaks down to Me_sSiF and BF_s.

Similar reactions of $[(C_6H_7)Fe(CO)_3]^+$ have also been observed with 2-trimethylsilyl-furan and -thiophen. These reactions are considerably faster than those previously reported¹ involving interaction of (I) with furan and thiophen, and provide a more convenient route to diene-substituted heterocycles.

Preliminary kinetic data have been obtained for reaction (1) in acetonitrile (Table). Apart from the reaction with p-Me₂NC₆H₄SnMe₃, all reactions were studied under pseudofirst-order conditions by use of a large excess of the ArMMe. compounds. In each series of arene substrates the expected order of reactivity is observed, *i.e.* Ph < p-MeO·C₆- $H_4 < p$ -Me₂N·C₄H₄, which is obviously related to the increasing ease of electrophilic attack at the carbon atom of the Ar-M bond. Also the aryltin compounds are more readily attacked by (I) than the silicon analogues, as previously observed for a range of more familiar electrophiles.² However, the difference between the reactivities of the tin and silicon compounds (a factor of ca. 10) is exceptionally small in this reaction (e.g. towards acid, PhSnMe, is some 10⁵ times as reactive as PhSiMe₃²), suggesting interesting mechanistic implications.

Preliminary tests indicate that other cationic π -envl complexes such as $[(C_7H_7)Cr(CO)_3]BF_4$ and the acyclic dienyl $[(C_{5}H_{7})Fe(CO)_{3}]BF_{4}$ also function as electrophiles in a manner analogous to reaction (1), indicating that the reaction may be useful for the synthesis of a variety of otherwise inaccessible compounds.

We thank the S.R.C. for the award of a Research Studentship to G.R.J.

(Received, 9th April 1975; Com. 415.)

¹L. A. P. Kane-Maguire and C. A. Mansfield, J.C.S. Chem. Comm., 1973, 540; C. A. Mansfield, K. M. Al-Kathumi, and L. A. P Kane-Maguire, J. Organometallic Chem., 1974, 71 Cll.

^aC. Eaborn and K. C. Pande J. Chem. Soc., 1960, 1566. ^aC. Eaborn and D. E. Webster, J. Chem. Soc., 1957, 4449; 1960, 179; R. W. Bott, C. Eaborn, and J. A. Waters, J. Chem. Soc., 1963, 681; R. Taylor in 'Comprehensive Chemical Kinetics,' vol. 13, ed. C. H. Bamford and C. F. H. Tipper, Elsevier, Amsterdam, 1972, pp. 324-349, 375-385.